
Gaussian Quadratures for the Integrals 
r?O r~~~~~~~~b 

f exp(-x2)f(x)dx and fexp(-X2)f(x)dx 

By N. M. Steen, G. D. Byrne and E. M. Gelbard 

Abstract. Gaussian quadratures are developed for the evaluation of the integrals given 
in the title. The weights and abscissae for the semi-infinite integral are given for two 
through fifteen points with fifteen places. For b = 1, the weights and abscissae are 
given for two through ten points with fifteen places. 

1. Introduction. In nuclear reactor design calculations, the evaluation of the 
effective radiative neutron capture cross-sections from a statistical model of the 
neutron-target interaction leads to integrals of the form 

rb 

(1.1) fbexp (-x2)f(x)dx, b < o 

and 

(1.2) f exp (-x2 )f(x)dx. 

In such problems, f is undefined for x < 0 and difficult to evaluate otherwise. For 
this reason, Gaussian quadratures for the evaluation of (1.1) and (1.2) are developed 
and their weights and abscissae are given in Tables II and III. It should be noted 
that the classical variants of Gauss quadrature are not applicable to (1.1). The 
integral of (1.2) can be transformed so that the Laguerre-Gauss quadrature is 
applicable. Unfortunately, for the function considered here, the required transforma- 
tion of variable, u = x2, leads to an integrand that is singular at the origin. Note 
that (1.2) could, in principle, be evaluated using the Hermite-Gauss quadrature by 
considering a function, g, which is an even extension of f about the origin. Often, 
however, g is of low-order differentiability at the origin. When this is true, the re- 
sulting approximations to (1.2) obtained by successive Hermite-Gauss quadratures 
tend to oscillate, with increasing N, about the true solution. This is demonstrated 
by the data in Table I. These data are Hermite-Gauss quadrature approximations 
to the integral of (1.2) for f(x) = Xk, yk = 1, 3 using g(x) = 1Xk. The exact value of 
the integral for both cases is 2. The examples shown are for k odd. When k is even, 
xJk = Xk and the Hermite-Gauss quadratures are exact so long as k < 2N - 1. 

It should be pointed out that if f is an even function the Hermite-Gauss quadra- 
tures may converge to (1.2) more rapidly than the quadratures presented in this 
paper. The reason is that the abscissae of the Hermite-Gauss quadratures are 
symmetrically distributed about the origin. Thus the evaluation of (1.2) with an 
M-point Hermite-Gauss quadrature, where M is even, only requires the use of the 
N = 2M points on the positive axis. The truncation error term however is still 
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of the form CMf(2M) (0) or C2Nf(4N) (0), 0 E [0, oc). The error term for an N-point 
quadrature of the type developed here is DNf(2N) (0) which involves only the 2Nth 
derivative while that of the Hermite-Gauss quadrature, also using only N-points 
contains the 4Nth derivative of f as well as the coefficient, CM, for the higher-order 
quadrature. 

TABLE I 

N Hermite-Gauss Relative 
Approximation Error, % 

k = 1 

2 0.6267 -25.3 
3 0.3618 27.6 
4 0.5565 -11.3 
5 0.4176 16.5 
6 0.5365 - 7.3 
7 0.4412 11.8 
8 0.5269 - 5.4 
9 0.4543 9.1 

10 0.5213 - 4.3 

k = 3 
2 0.3133 37.3 
3 0.5427 - 8.5 
4 0.4820 3.6 
5 0.5112 - 2.2 
6 0.4933 1.3 
7 0.5051 - 1.0 
8 0.4965 0.7 
9 0.5030 - 0.6 

10 0.4979 0.4 

2. Computation of Weights and Abscissae. Since the theory of Gaussian 
quadrature is well known only the special results for the cases of interest here will 
be presented. The abscissae, xj, j = 1, - - -, N are the zeros of the Nth degree 
polynomial, PN(X), orthogonal on the interval of integration with respect to the 
weight function, w(x) = exp (-x2). Because of the similarity of form we will discuss 
in detail only the case for the finite upper limit, b. The semi-infinite case follows 
directly by taking the appropriate limits as b -> o. 

The weights of the quadratures are computed from the well-known expression 

(2.1) W, = YN-1/[PN'(Xj)PN-1(XJ)], j = 1, *, 

which follows from the Christoffel-Darboux identity. The term YN is given by 

rb 

(2.2) YN exp (_X2)PN2(x)dx. 

The orthogonality properties only define the polynomials within an arbitrary 
multiplicative constant. For convenience the constant has been selected to make the 
polynomials monic. Thus the first two polynomials are 
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(2.3) po(x) = , 

(2.4) pi(x) = x - [1 - exp (-b2)]/[V/7rerf (b)] 

The higher-order polynomials were generated from the three term recurrence rela- 
tion between successive orthogonal polynomials which is of the form 

(2.5) pk+l(X) = (x + cxk)pk(X) + fkPk-1(X) k = 1, ... 

in which the parameters, ak, fik, are defined as 
rb 

(2.6) ak = -Yk f exp (-x2)xpk2(x)dx, 

(2.7) /3k = -Yk/lYk-1 - 

The polynomials could be generated directly from (2.2)-(2.7), by evaluating the 
integrals in (2.2) and (2.6) in a straightforward manner. However, the following 
method of evaluating ak and 7k was developed which requires relatively few arith- 
metic operations. This method is derived below. 

Observe that 

(2.8) pk(O) = ak-lpk-1(O) + d k-lpk-2(O), 

(2.9) pk(b) = (b + ak-1)pkl1(b) + Ok-lpk-2(b) , b < oc 

The orthogonality conditions permit Yk, of (2.2), to be expressed as 
rb 

(2.10) Yk exp (-x2)pk(X)pk-l(x)xdx 

by multiplying (2.5) by exp (-x2)pk-l(x) and integrating. This result may then be 
integrated by parts to obtain 

(2.1)k = - [exp (-x)pk (X)Pk-1 (X)] 

(2.11) 

+ 2 f exp (-x )pk'(X)pk-l(X)dX. 

The integral of (2.11) may be evaluated, using the Christoffel-Darboux identity, 
as follows. Let 

rb 

(2.12) Zk1 = /bexp (-x2 )pk'(X)pk-1(x)dx . 

From the orthogonality of p it follows that Zk-1 may also be expressed as 
rb 

(2.13) Zki = fbexp (-x2)[pk'(X)pk-l(X) - pk(X)pk'-(x)]ddx 

An easily derived consequence of the Christoffel-Darboux identity is the relation 
k-1 

(2.14) pk'(X)pk-1(X) - Pk(X)Pk-1l(X) = 7k-1 Z Pr2 (X)/7r. 
r=0 

Multiplication of (2.14) by exp (-x2) and integration provides the result 

(2.15) Zk-1 = 7kYk-1 - 
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Thus (2.11), together with (2.15), leads to the recurrence relation 

(2.16) Yk = 2kzk-1 - 1[exp (-X2)pk(X)pk-l()]0- 

A recurrence relation may be obtained for ak upon integration of (2.6) by parts. The 
result is 

(2.17) ak 2 Yk [exp (-x2)pk (X)] . 

The recurrence relation for Ok follows directly from (2.7) using (2.16). With the aid 
of the above equations, (2.5) provides a completely recursive means of generating 
the higher-order polynomials. 

Since the weight function, w(x) = exp (-x2), is nonzero on the interval of 
integration the zeros of the polynomials are known to be real, distinct and to lie in 
the interior of the interval. Consequently the zeros were computed numerically 
using Newton-Raphson iteration, starting with the smallest zero. As each zero was 
approximated the order of the polynomial was reduced and the smallest zero of the 
reduced polynomial was approximated. The zeros obtained in this manner were then 
tested in the original polynomial and corrected as necessary. 

The error coefficients, DN, listed in the following tables are the coefficients of the 
2Nth derivative of the function, f, appearing in the standard expression for the 
truncation error, EN, defined as 

(2.18) EN = DNf 2N)(0) , 0 E [0, b] 

where DN is 

(2.19) DN = YN/(2N)!. 

Quadratures corresponding to values of b from 0.05 through 0.95 in steps of 0.05 
have also been generated and tabulated [1] but it would be impractical to attempt 
to list them here. 

In a paper of this sort, it is customary to assess the validity of the weights and 
abscissae given in Tables II and III by using them in the quadrature analogues of 
the integrals: 

rb 

o= f exp (-x2) dx = \/ir erf (b) o~~~~~~~ 
rb 

(2.20) I, = f xexp (-x2)dx = [1 - exp (-b2)] 

b 
k 2) ~(k_-_1)' 1 bklex -2) Ik = x kexp (-x )dx = 2 Ik-2 - 2 b exp b 

for k = 1, 2, , 2N-1 and comparing these approximate results with the exact 
results. The data given in Tables II and III were checked by this process and were 
found to be accurate to six units in the fifteenth place. 

This check verifies the accuracy of the data in these tables for the purpose of 
integration, which is the primary objective in this paper. 
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TABLE - II 
WEIGHTS AND ABSCISSAE OF GAUSSIAN QUADRATURES FvR THE 

INTERVAL (0,INF.) WITH WFIGHT FUNCTIOvN 
2 

W(X) = EXP(-X 

WEIGHTS ABSCISSAE 
N= 2 

6.40529179684379D-01 3.00193931060839D-01 
2.45697745768379D-01 1.25242104533372D+00 

ERROR COEF. = 22900-02 

N- 3 
4.46029770466658D-01 1.90554149798192D-01 
3.96468266998335D-01 8*48251867544577D-01 
4.37288879877644D-02 1.79977657841573D+00 

ERR^R COEF. = 38545-04 

N- 4 
3.25302999756919D-01 1.33776446996068D-01 
4.21107101852062D-01 6.24324690187190D-01 
1.33,442500357520D-01 1.34253782564499D+00 
6.37432348625728D-03 2.26266447701036D+00 

ERROR C^EF = 46135-06 

N= 5 
2.48406152028443D-01 1.00242151968216D-01 
3.92331066652399D-01 4.82813966046201D-01 
2.11418193076057D-01 1.06094982152572D+00 
3.32466603513439D-02 1.77972941852026D+00 
8.24853344515628D-04 2.66976035608766D+00 

ERROR CvEF. 42863-08 

N 6 
1.968496754885980-01 7*86006594130979D-02 
3.49154201525395D-01 3.86739410270631D-01 
2.57259520584421D-01 8.66429471682044D-01 
7*60131375840057D-02 1.46569804966352D+00 
6.85191862513596D-03 2.17270779693900D+00 
9.84716452019267D-05 3.03682016932287D+00 

ERR^R COEF. 32548-10 

N= 7 
1o60609965149261D-01 6.37164846067008D-02 
3.06319808158099D-01 3.18192018888619D-01 
2.75527141784905D-01 7.24198989258373D-01 
1o20630193130784D-01 1o238035599215090+00 
2.18922863438067D-02 1.83852822027095D+00 
1.23644672831056D-03 2.53148815132768D+00 
1.10841575911059D-05 3.37345643012458D+00 

ERROR C^EF. 20900-12 
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TABLE II (CONTINUED) 

N- 8 
1*34109188453360D-01 5*29786439318514D-02 
2*68330754472640D-01 2*67398372167767D-01 
2*75953397988422D-01 6*16302884182402D-01 
1*57448282618790D-01 1*06424631211623D+00 
4.48141099174625D-02 1*58885586227006D+00 
5.36793575602526D-03 2*18392115309586D+00 
2.02063649132407D-04 2.86313388370808D+00 
1*19259692659532D-06 3*68600716272440D+00 

ERROR COEF. 11626-14 
N 9 

1*14088970242118D-01 4.49390308011934D-02 
2*35940791223685D-01 2*28605305560535D-01 
2*66425473630253D-01 5*32195844331646D-01 
1*83251679101663D-01 9*27280745338081D-01 
7*13440493066916D-02 1.39292385519588D+00 
1.39814184155604D-02 1*91884309919743D+00 
1*16385272078519D-03 2.50624783400574D+00 
3*05670214897831D-05 3.17269213348124D+00 
1*23790511337496D-07 3.97889886978978D+00 

ERR^R COEF. 57051-17 

N t 10 
9 *85520975191087D-02 3.87385243257289D-02 
2.*Q8678066608185D-01 1.982333040130'83'D-01 

2'.52051688403761D-01 4*65Z01111814767D-01 
1.98684340038387D-01 8.16861885592273D-01 
9.*71984227600620D-02 1.23454132402818D+00 
2*70244164355446D-02 1. 70679814968913D+00 
3.80464962249537D-03 2.22994008892494D+00 
2#2888624'3044656D-04 2.80910374689875D+00 
4.34534479844469D-06 3.46387241949586D+00 
1*24773714817825D-08 4*25536180636608D+00 

ERROR COEF * 25043-19 

N = 11 
8*62207055355942D-02 3*38393212320868D-02 
1*85767318955695D-01 1*73955727711686D-01 
2*35826124129815D-01 4*10873840975301D-01 
2*05850326841520D-01 7*26271784264131D-01 
1.19581170615297D-01 1.10386324647012D+00 
4*31443275880520D-02 1.53229503458121D+00 
8.86764989474414D-03 2.00578290247431D+00 
9.27141875082127D-04 2.52435214152551D+00 
4*15719321667468D-05 3.09535170987551D+O0 
5.86857646837617D-07 3.73947860994972D+00 
1*22714513994286D-09 4.51783596719327D+00 

ERROR COEF. 99447-22 
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TABLE II (CONTINUED) 

N 12 
7*62461468014692D-02 2.98897007730461D-02 
1.66446068894088D-01 1.54204878281815D-01 
2* 19394898138567D-01 3.66143963007318D-01 
2.07016508675540D-01 6.50881015894534D-01 
1.37264362783550D-01 9.94366869943082D-01 
6*0505674338007.2D-02 1.38589120372088D+00 
1*65538019519272D-02 1*8.1884860850511D+00 
2o58608378742107b-03 2.29084273875259D+00 
2oO62?37540974292D04 2.80409679347421D+00 
7.06650986370700D-06 3.36727070424289D+00 
7.59131546779026D-08 4.00168347575167D+00 
1.18195417081408D-10 4.76821628806517D+00 

ERR^R COEF* = 36052-24 

N = 13 
6.80463905352764D-02 2.66511266597122D-02 
1.50057211876373D-01 1.37891855649089D-01 
2.03606639827325D-01 3.28828675536304D-01 
2.04104355193263D-01 5.87378532052256D-01 
1.50119228114358D-01 9.01480885282686D-01 
7.74536314139415D-02 1.26129650345530D+00 
2.64891666492538D-02 1.66003713286282D+00 
5.62343028882350D-03 2*09410900519525D+00 
6*83241175771430D-04 2.563207026286430+00 
4.24853316505515D-05 3.*07091234206554D+00 
1.13557100512952D-06 3.62669201282754D+00 
9*46453637801777D-09 4.25220740148118D+00 
1*11810460611588D-11 5.00800834420412D+00 

ERR^R CCEF. 12023-26 

N - 14 
6.12109822716413D-02 2.39567896629936D-02 
1.36062060620609D-01 1.24240346144723D-01 
1.88856803527084D-01 2.97338573288085D-01 
1.98577829123488D-01 5.33329221273305D-01 
1 * 58617337872050D-01 8*21873198117369D-01 
9.28167828948399D-02 115406708458062D+00 
3.79316390125047D-02 1 * 52327480337614D+00 
1.02563910691812D-02 1.925338223209420+00 
1*72277180701059D-03 2.35860077983781D+00 
1.65956340534487D-04 2.82409376823402D+00 
8.19589322531928D-06 3.32626937208736D+00 
1 * 73876608495078D-07 3 * 87510500420455D+00 
1*14293978310768D-09 4.49243808452490D+00 
1.04120010017399D-12 5e.23843137515097D+00 

ERROR CVEF . 37125-29 
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TABLE II (CONTINUED) 

N 15 
5*54433663102343D-02 2.16869474675590D-02 
1.24027738987730D-01 1.12684220347775D-01 
1.75290943892075D-01 2*70492671421899D-01 
1.91488340747342D-01 4.86902370381935D-01 
1*63473797144070D-01 7*53043683072978D-01 
1*05937637278492D-01 1.06093100362236D+00 
5.00270211534535D-02 1.40425495820363D+00 
1*64429690052673D-02 1.77864637941183D+00 
3.57320421428311D-03 2*18170813144494D+00 
4*82896509305201D-04 2.61306084533352D+00 
3.74908650266318D-05 3.07461811380851D+00 
1.49368411589636D-06 3.57140815113714D+00 
2*55270496934465D-08 4.11373608977209D+00 
1*34217679136316D-10 4.72351306243148D+00 
9*56227446736465D-14 5.46048893578335D+00 

ERR^R COEF - 10672-31 

TABLE - III 
WEIGHTS AND ABSCISSAE OF GAUSSIAN QUADRATURES FOR THE 

INTERVAL (0,1*00) WITH WEIGHT FUNCTION 
2 

W(X) - EXP(-X 

WEIGHTS ABSCISSAE 
Ns 2 

4*31325364170332D-01 1.8960804327074VD-01 
3*15498768642095D-01 7.42562394488043D-01 

ERROR COEF = 15778-03 

N- 3 
2.53700192457267D-01 1*04475414746960D-01 
3.43144645828844D-01 4.65591332333112D-01 
1.49979294526316D-01 8.65383946240150D-01 

ERROR COEF. = 33976-06 

N- 4 
1.63034604989450D-01 6.55295245474369D-02 
2.79934755021517D-01 3.10558620696937D-01 
2.18855584041643D-01 6.41085413223258D-01 
8.49991887598173D-02 9.19249071295932D-01 

ERROR COEF. = 38580-09 

N- 5 
1*12646511369676D-01 4*47677711283395D-02 
2*16681115495002D-01 2.19457476213530D-01 
2*20720515248768D-01 4.77801751524747D-01 
1*424417648301790-01 7.48160820317653D-01 
5.433422586880180-02 9,46641977439054D-01 

ERROR COEF. = 27081-12 
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TABLE III (CONTINUED) 

N 6 
8.21931584888009D-02 3.24661014738995D-02 
1.68093171657335D-01 1.62403791544834D-01 
1.97728490064862D-01 3.65192922556895D-01 
1.63278375115819D-01 5.99091843952587D-01 
9.78718350596067D-02 8.15631492565660D-01 
3*76591024260037D-02 9.62255559768127D-01 

ERROR COEF. 12917-15 

N= 7 
6*25065724477524D-02 2.45998022135265D-02 
1.32553267408311D-01 1.24654588269490D-01 
1.69774770042795D-01 2.86306147073804D-01 
1*62429751086312D-01 4*83616811726703D-01 
1.21152909496289D-01 6.86019406453583D-01 
7*07790189509976D-02 8.60030242686043D-01 
2.76278433799691D-02 9.71939583327556D-01 

ERR^R COEF. - 44594-19 

N= 8 
4.90882051189123D-02 1*92734192234665D-02 
1.06525203671690D-01 9.85176987436895D-02 
1*43947177209678D-01 2*29598292416142D-01 
1* 51307979402994D-01 3*95651061416866D-01 
1*29555768236386D-01 5.76297029050948D-01 
9.18762308512729D-02 7.49083984906103D-01 
5*33903928573824D-02 8*90484489455275D-01 
2*11331754641105D-02 9.78340479473957D-01 

ERR^R COEF. 11.660-22 

N= 9 
3*95488165784004D-02 1*55030326457613D-02. 
8.71639032969965D-02 7997311964871323D-02 
1*22038930369815D-01 1.87762530384973D-01 
1.36601850815752D-01 3*28226061703989D-01 
1*2843430871296OD-01 4*87018253938628D-01 
1.03227785327047D-01 6.48410556244687D-01 
7*14613562927916D-02 7*95713083865440D-01 
4.16580238804577D-02 9*12151359102553D-01 
1.66891575382076D-02 9.827845907358900-01 

ERROR CVEF. 23892-26 



670 N. M. STEEN, G. D. BYRNE AND E. M. GELBARD 

TABLE III (CONTINUED) 

N 10 
3o25319695101801D-02 1o27378499713740D-02 
7.24838964037449D-02 6.58023279743935D-02 
1.04004662155270D-01 1*56155783059660D-01 
1 * 21594475562980D-01 2 *75890718366863D-01 
1.22093608318116D-01 4* 14966322218475D-01 
1.07195747923389D-01 5.62009142193357D-01 
8.30779890294863D-02 7.04832804690269D-01 
5.69285988401857D-02 8.30893869740303D-01 
3*33982919934992D-02 9.28057569743495D-01 
1.35148930755755D-02 9*85992766817013D-01 

ERRCR COEF. = 39397-30 

TABLE IV 

Approximate Error Amplification Factors of Relation (2.16) 
Upper integration 

limit n=5 n = 10 n = 15 
X0 103 105 107 
1.0 107 1015 

It should be pointed out, however, that this check does not insure the accuracy 
of the individual weights and abscissae in Tables II and III to the number of places 
cited. Since the abscissae in Table II are the zeros of the half-range Hermite poly- 
nomials they alone may be of interest to some readers. The accuracy of the in- 
dividual entries may be estimated by examining the stability of the algorithm. 

The primary instability of the algorithm presented in this paper is in the re- 
cursive evaluation of yn using Eq. (2.16). The significance of this instability may be 
examined using the analysis developed by Gautschi [2] as follows. Suppose a relative 
error, e, is introduced in the computation of Pyo. This may be rounding error for 
example. Consider now the propagation of this error throughout the sequence 

Y71, -Y2, * y y} via the recurrence relation. For simplicity, assume that all other 
computations are carried out with infinite precision. Gautschi has shown that the 
relative error in yn is then PnE where the amplification factor, pn, is given by Eq. 
(2.21) 

(2.21) pn = 'YOhn/Yn. 

In the case at hand, hn is expressed as 

(2.22) hn= I k + i) = n!/2. 
k=O2 

If pn is greater than 1, the initial error is amplified throughout the sequence. Table 
IV contains some approximate values of pn related to Eq. (2.16). 
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All the data given here were computed in double-precision arithmetic on the 
CDC-6600 computer, which provides a 21-digit mantissa plus sign and exponent. 
Thus, it is to be expected that e 10-21. 

While the analysis presented here is oversimplified it suggests that only about 
14-place accuracy can be expected in 715 for the semi-infinite interval and about 
7 places in Pylo for the finite interval. The data in Tables II and III is, in general, 
no more accurate than the corresponding values of Pyn. 

Independent verification of Table III by the referee to at least 12 places for 
n = 1 (1) 10 indicates that the algorithm is more stable for the finite-interval case 
than is to be expected from this analysis. 

On the other hand, a paper by Galant, which has appeared as this article was 
in preparation for printing, suggests that in the case of the semi-infinite interval 
the algorithm is less stable than is indicated by the above analysis. 
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